
Gaussian Process Regression with OCaml1

Version 1.2.0

Markus Mottl2

December 24, 2014

1http://mmottl.github.io/gpr
2markus.mottl@gmail.com

Abstract

This manual documents the implementation and use of the OCaml GPR
library for Gaussian Process Regression with OCaml.

Contents

1 Overview 2
1.1 Background . 2

1.1.1 Video tutorials . 3
1.1.2 Books and papers . 3

1.2 Features of OCaml GPR . 4

2 Using the library 6
2.1 Interface documentation . 6
2.2 Predefined covariance functions 8

3 Example applications 9
3.1 Test applications . 9

3.1.1 Derivative testing . 9
3.1.2 Test case for learning . 9

3.2 Command-line tool . 11
3.2.1 Training models . 11
3.2.2 Applying models . 12

4 Future work 14

A Implementation details 15

1

Chapter 1

Overview

The OCaml GPR library features implementations of many of the latest devel-
opments in the currently heavily researched machine learning area of Gaussian
process regression.

1.1 Background

Gaussian processes define probability distributions over functions. This allows
us to apply probabilistic reasoning to problems where we are dealing with la-
tent functions, i.e. functions that cannot be directly observed or known with
certainty. By specifying prior knowledge about these distributions in form of a
mean function and a covariance function1 and making use of Bayes’ theorem,
Gaussian processes provide us with a rigorous nonparametric way of computing
posterior distributions over latent functions given data, e.g. to solve regression
problems2. As more data becomes available, the Gaussian process framework
learns an ever more accurate reflection of the probability distribution of latent
functions that probably generate the observed data.

Due to their mathematically elegant nature, Gaussian processes allow for
analytically tractable calculation of the posterior mean and covariance func-
tions. Though it is easy to formulate the required equations, GPs come at a
usually intractably high computational price for large problems. Typically, only
problems of up to a few thousand samples can be solved within reasonable time.
Efficient approximation methods have been developed in the recent past to ad-
dress this shortcoming, and this library makes heavy use of them.

Gaussian processes are true generalizations of e.g. linear regression, ARMA
processes, single-layer neural networks with an infinite number of hidden units,

1Sometimes also called a kernel.
2Gaussian processes can also be used for classification purposes. This is by itself a large

research area, which is not covered by this library.

2

and many other more widely known approaches and modeling techniques. GPs
are closely related to support vector (SVM) and other kernel machines, but
have features that may make them a more suitable choice in many situations.
For example they offer predictive variances, Bayesian model selection, sampling
from the posterior distribution, etc.

It would go beyond the scope of this library documentation to provide for a
detailed treatment of Gaussian processes. Hence, readers unfamiliar with this
approach may want to consult online resources, of which there are plenty. This
section presents an overview of recommended materials.

1.1.1 Video tutorials

Video tutorials are probably best suited for quickly developing an intuition
and basic formal background of Gaussian processes and perspectives for their
practical use.

• Gaussian Process Basics3: David MacKay’s lecture given at the Gaussian
Processes in Practice Workshop in 2006. This one hour video tutorial uses
numerous graphical examples and animations to aid understanding of the
basic principles behind inference techniques based on Gaussian processes.

• Learning with Gaussian Processes4: a slightly longer, two hour video tu-
torial series presented by Carl Edward Rasmussen at the Sheffield EPSRC
Winter School 2008, which goes into somewhat more detail.

• Bayesian Inference and Gaussian Processes5: readers interested in a fairly
thorough, from the ground up treatment of Bayesian inference techniques
using Gaussian processes may want to watch this five hour video tuto-
rial series presented by Carl Edward Rasmussen at the MLSS 2007 in
Tübingen.

1.1.2 Books and papers

The following texts are intended for people who need a more formal treatment
and theory. This is especially recommended if one wants to be able to imple-
ment Gaussian processes and their approximations efficiently, and build up the
background knowledge necessary for quick comprehension of publications in the
field.

• Flexible and efficient Gaussian process models for machine learning6: Ed-
ward Lloyd Snelson’s PhD thesis [Sne08] offers a particularly readable
treatment of modern inference and approximation techniques for Gaus-
sian processes that avoids heavy formalism in favor of intuitive notation

3http://videolectures.net/gpip06 mackay gpb
4http://videolectures.net/epsrcws08 rasmussen lgp
5http://videolectures.net/mlss07 rasmussen bigp
6http://www.gatsby.ucl.ac.uk/~snelson/thesis.pdf

3

and clearly presented high-level concepts without sacrificing detail needed
for implementation. This library owes a lot to his work.

• Gaussian Processes for Machine Learning7: many researchers in this area
would call this book [RW06], which was written by Carl Edward Ras-
mussen and Christopher K. I. Williams, the “bible of Gaussian processes”.
It presents a rigorous treatment of the underlying theory for both regres-
sion and classification problems, and more general aspects like properties
of covariance functions, etc. The authors have kindly made the full text
and Matlab sources available online. Their Gaussian process website8 also
lists a great wealth of other resources valuable for both researchers and
practitioners.

• Pattern Recognition and Machine Learning : this book [Bis07] by Christo-
pher M. Bishop thoroughly introduces the reader to the field of machine
learning, especially to Bayesian methods, including Gaussian processes.

• Matrix Analysis and Applied Linear Algebra: readers who would like to
obtain a deeper understanding of the methods from linear algebra (e.g.
matrix factorizations) used in the OCaml GPR library may find a most
comprehensive and detailed treatment in this book [Mey00] by Carl D.
Meyer.

References to research about specific techniques used in OCaml GPR are
provided in the bibliography.

1.2 Features of OCaml GPR

Among other features the OCaml GPR library currently offers:

• Sparse Gaussian processes using the FI(T)C9 approximations for com-
putationally tractable learning (see [SG05], [Sne08]). Unlike some other
approximations that lead to degeneracy, FI(T)C maintains sane posterior
variances, at almost no extra computational cost.

• Safe and convenient API for computing posterior means, variances, co-
variances, log evidence, for sampling from the posterior distribution, cal-
culating statistics of the quality of fit, etc. The OCaml type and module
system as used by the API make sure that many easily made program-
ming errors can be avoided and guide the user to make efficient use of the
library.

7http://www.gaussianprocess.org/gpml
8http://www.gaussianprocess.org
9Fully Independent (Training) Conditional

4

• Optimization of hyper parameters via evidence maximization10 including
optimization of inducing inputs (SPGP algorithm11). The limited memory
BFGS2 algorithm in the GNU scientific library12 is employed for this
purpose.

• Supervised dimensionality reduction and improved predictions under he-
teroskedastic noise conditions (see [SG06], [Sne08]).

• Sparse multiscale Gaussian process regression (see [WKS08]).

• Variational improvements to the approximate posterior distribution (see
[Tit09]).

• Numerically stable GP calculations using QR-factorization to avoid the
more commonly used and numerically unstable solution of normal equa-
tions via Cholesky factorization (see [FWA+09]).

• Consistent use of bindings to BLAS/LAPACK and C-code throughout key
computational parts of the library for optimum performance and concise-
ness.

• Functors for plugging arbitrary covariance functions into the framework.
There is no constraint on the type of covariance functions, i.e. also string
inputs, graph inputs, etc., could potentially be used with ease given suit-
able covariance functions13.

• Rigorous test suite for checking user-provided derivatives of covariance
functions, which are usually quite hard to implement correctly, and self-
test code to verify derivatives of marginal log likelihood functions using
finite differences.

10Also known as type II maximum likelihood.
11This library exploits sparse matrix operations to achieve optimum big-O complexity when

learning inducing inputs with the SPGP algorithm, but also for multiscales and other hyper
parameters that imply sparse derivative matrices for the marginal log likelihood.

12http://www.gnu.org/software/gsl
13The library is currently only distributed with covariance functions that operate on multi-

variate numerical inputs. Interested readers may feel free to contribute others.

5

Chapter 2

Using the library

2.1 Interface documentation

The most important file for understanding the API is called gpr_interfaces.ml

and contained in the lib directory. It is already heavily documented so we will
only provide for a high-level view here. Please refer to the OCaml file for details.
Besides defining a few types, e.g. representations for sparse matrices that users
will have to use when communicating covariance matrices to the system, the
interfaces file contains two important submodules:

• Specs, which contains signatures that users need to provide for specifying
covariance functions:

– Kernel, the signature for accessing the datastructure that determines
a covariance function (= kernel) and its parameters.

– Eval, the signature of modules users have to implement to evaluate
covariance functions:

∗ Kernel, a module satisfying the Kernel signature above.

∗ Inducing, for evaluating covariances among inducing points.

∗ Input, for evaluating covariances involving single input points
and inducing inputs.

∗ Inputs, for evaluating covariances involving multiple input points1

and inducing inputs.

– Deriv, the signature of modules users have to implement to compute
derivatives of covariance functions:

∗ Eval, a module satisfying the Eval signature above. Derivative
code without the ability to evaluate functions would be rather
useless.

1Required separately besides evaluation of single inputs to force the user to think about
how to optimize for this case, which is quite important.

6

∗ Hyper, a module specifying the type of hyper parameters, for
which derivatives can be computed.

∗ Inducing and Input, which provide a similar abstraction for
derivatives as the modules of same name provide for evaluation
functions in Eval. Note that computations between covariance
evaluations and derivatives can be shared. This is especially use-
ful and efficient for covariance functions that use the exponential
function.

• Sigs, which contains signatures a Gaussian process framework will provide
once it has been instantiated with a given covariance specification:

– Eval, which contains modules the user can access to perform com-
putations in the Gaussian process framework:

∗ Spec, the user-provided specification of the covariance function
as mentioned further above.

∗ Inducing, which contains functions to select and evaluate induc-
ing inputs.

∗ Input, for dealing with single inputs.

∗ Inputs, for dealing with multiple inputs.

∗ Model, for dealing with models. A model is specified by the
inputs it consists of and the noise level.

∗ Trained, for dealing with trained models. A trained model is a
model that has been trained on a given target vector.

∗ Stats, for computing statistics of the trained model (quality of
fit, etc.).

∗ Mean_predictor, minimalist datastructure for making mean pre-
dictions.

∗ Mean, a posterior mean for a single point.

∗ Means, multiple means.

∗ Co_variance_predictor, minimalist datastructure for making
(co-)variance predictions.

∗ Variance, a posterior variance for a single point.

∗ Variances, multiple posterior variances.

∗ Covariances, posterior covariances.

∗ Sampler, sampling at a single point.

∗ Cov_sampler, sampling at multiple points (accounting for their
covariance).

– Deriv, which contains modules the user can access to perform deriva-
tive computations for marginal log likelihoods within the Gaussian
process framework:

∗ Eval, module satisfying the Eval signature mentioned above.

∗ Deriv, module containing all the derivative code:

7

· Spec, the user specification for covariance function deriva-
tives.

· Inducing, Inputs, Model, Trained, basically mirror the role
of the modules of same name in the Eval signature.

· Test contains functions for testing both derivative code sup-
plied by the user and internal code using finite differences.

· Optim contains submodules for optimizing Gaussian processes,
currently only the Gsl submodule, which uses the GNU sci-
entific library for that purpose.

2.2 Predefined covariance functions

The following modules implementing covariance functions already come with
the library:

• Cov_const: the covariance of a constant function.

• Cov_lin_one: the covariance of a linear function with a single hyper pa-
rameter (bias).

• Cov_lin_ard: the covariance of a linear function with Automatic Rele-
vance Determination (ARD).

• Cov_se_iso: isotropic squared exponential covariance with amplitude and
length scale hyper parameters.

• Cov_se_fat: a highly parameterizable (“fat”) squared exponential covari-
ance function with amplitude, dimensionality reduction, multiscales, and
heteroskedastic noise support.

8

Chapter 3

Example applications

There are currently three applications that are part of the distribution, two
for testing the library, and one simple command-line tool for solving regression
problems presented in comma-separated (CSV) files.

3.1 Test applications

The directory test contains two applications.

3.1.1 Derivative testing

The application test_derivatives.native generates random data to run the
internal test suite for checking the correctness of derivatives of the marginal
log likelihood function for the “fat” squared exponential covariance function. It
prints out the hyper parameters it is currently testing and would fail with an
appropriate message if there were a problem.

3.1.2 Test case for learning

The application save_data.native evaluates random inputs on some known,
nonlinear, one-dimensional function, adds noise, and then trains a Gaussian pro-
cess to learn the function from the data. The application writes out a number
of results that can subsequently be visualized using R1 and cross-verified with
a simple Octave2 script.

Just run save_data.native. It will print out progress information while
performing evidence maximization to find suitable hyper parameters and loca-
tions for inducing inputs. This will not usually take more than a few seconds

1http://www.r-project.org
2http://www.gnu.org/software/octave

9

(often just a fraction) unless the randomly chosen initial state leads to a bad lo-
cal optimum that is surrounded by an almost flat surface. Just restart the run in
this unlikely case. Gaussian processes do not seem overly prone to overfitting,
but depending on the problem and the chosen covariance function, evidence
maximization may become trapped in local optima. These local optima can be
interpreted as alternative solutions if they fit about equally well though. Once
the application finishes, it will store results in the test/data subdirectory.

Visualisation of results

We can now execute R on the command-line to run the visualization script for
this data by typing:

source(’display.R’)

This will visualize the data points, true mean and true confidence intervals,
the inferred mean function and its confidence intervals, samples of candidate
latent functions from the posterior distribution, locations of inducing inputs,
etc. Here is an example:

Verification against Octave implementation

There is also a small test suite for comparing results of the OCaml library
to equations written in Octave. It, too, depends on the data saved above by

10

save_data.native. The Octave test suite does not use particularly efficient
ways of computing its results, but is fairly simple and readable. It calls Edward
Snelson’s SPGP implementation3 for reference. The user may want to compile
the more efficient dist.c file from within Octave first:

mex dist.c

Then source the test suite:

source "oct.m"

3.2 Command-line tool

The application ocaml_gpr.native employs the OCaml GPR library for imple-
menting a simple utility to train and evaluate Gaussian process models using
the “fat” squared exponential covariance function and the variational improve-
ment [Tit09] for model selection. It reads comma-separated values from stan-
dard input for both training and testing. This application is considered to be
an example only, but will likely be extended in the future for more serious usage.

Datasets for regression problems that one may want to try out for testing
can be downloaded from many sites, one of the most well-known being the UCI
Machine Learning Repository4.

3.2.1 Training models

Here is an example invocation:

ocaml_gpr.native -verbose -cmd train -model foo.model < data.csv

It is assumed that the file data.csv is comma-separated and that the last
column contains the target values. The trained model will be stored in file
foo.model. It is generally recommended to use the -verbose flag for train-
ing, which will display various statistics at most once a second during training
iterations on standard error, e.g.:

target variance: 84.41956

iter 1: MSLL=18.9074776 SMSE=0.3878503 MAD=3.8968803 MAXAD=32.1662739

iter 1: |gradient|=29911.88895

iter 171: MSLL=-0.8875856 SMSE=0.2672445 MAD=2.9789019 MAXAD=34.0733409

iter 171: |gradient|=57.08112

The user can interrupt training at any time by pressing CTRL-C if the result
seems good enough. The best model found so far, as determined by the mean
standardized log loss (MSLL), will then be saved to the specified model file.

3http://www.gatsby.ucl.ac.uk/~snelson/SPGP dist.tgz
4http://archive.ics.uci.edu/ml/index.html

11

It is also possible to specify a maximum number of iterations using the flag
-max-iter. Otherwise the optimizer parameters (see below) determine when
learning stops.

Training flags

Various flags can be passed to parameterize the learning process:

• -n-inducing sets the number of inducing inputs. The more points are
used, the more flexible the function that can be learnt. Note that using
as many inducing points as there are inputs will not necessarily yield
the full Gaussian process, because the used approximation methods may
also model heteroskedastic noise. Furthermore, the computational effort
increases as O(M3), M being the number of inducing inputs. The number
of inducing inputs will by itself not lead to overlearning, i.e. more is usually
rather better than worse. But increasing this number may lead to a larger
number of local optima and hence not necessarily better results.

• -sigma2 sets the initial noise level hyper parameter.

• -amplitude sets the initial amplitude hyper parameter.

• -dim-red allows setting the target dimension for dimensionality reduction
of the input data. None will be performed otherwise. Note that one can
also specify the full dimensionality of the original input data, in which
case it will be subject to a fully general linear transformation, which will
be learnt in a supervised way in order to reveal useful features.

• -log-het-sked turns on support for improved learning of heteroskeda-
stic noise and sets the initial value for the logarithm of the associated
hyper parameters. Negative values may often be required to avoid getting
trapped in bad optima right at the start.

• -multiscale turns on learning of multiscale parameters.

• -tol, -step, and -eps set the line search tolerance, the initial step size,
and the stopping criterion (gradient norm) for the GSL-optimizer respec-
tively.

It usually requires some experimentation to find out what kinds of parame-
ters may be most suitable for a given problem.

3.2.2 Applying models

Here is an example on how to apply models to test sets:

ocaml_gpr.native -cmd test -model foo.model < test.csv

12

It is assumed that the test set only contains inputs in its columns. The mean
predictions for each input will be printed in the same order to standard output.

By specifying -with-stddev on the command line, a second column will
be printed separated by a comma, which contains the uncertainty of this mean
prediction expressed as a standard deviation. If the flag -predictive is used,
the noise will be included to yield a predictive distribution.

13

Chapter 4

Future work

Besides improving the usability of the example application, a few extensions to
the library are considered for the near future:

• More flexible covariance functions. Besides adding more such functions
and more features to e.g. the “fat” squared exponential covariance function
and making parameterization simpler, a very interesting approach would
be to support combining covariance functions. As described in [RW06],
the sum and product of these are also covariance functions, which would
hence allow making better use of problem-specific background knowledge.

• Warping (see [SRG03]) for nonlinear, nonparametric transformations of
the target variable.

• Sparse convolved GPs (see [AL08]), which would support multiple non-
linearly correlated target variables. This would require implementing the
PI(T)C1 approximation (see [Sne08]), which may also be beneficial for
solving particular problems.

• Initialisation of inducing inputs using partial Cholesky factorization in-
stead of randomly chosen points. This may be especially useful in the
future for problems that have non-numerical inputs, because these cannot
be optimized with numerical and even less so with efficient gradient-based
methods.

• A global optimisation framework that uses Gaussian processes to model
loss functions that are expensive to evaluate would seem like a great ap-
plication to add.

The interested reader may feel free to contribute these or other features.

1Partially Independent (Training) Conditional

14

Appendix A

Implementation details

This section consists of equations used for computing the FI(T)C predictive
distribution, and the log likelihood and its derivatives in the OCaml GPR li-
brary. The implementation factorizes the computations in this way for several
reasons: to minimize computation time and memory usage, and to improve
numerical stability by e.g. using QR factorization to avoid normal equations,
and by avoiding inverses whenever possible without great loss of efficiency1. It
otherwise aims for ease of implementation, e.g. combining derivative terms to
simplify dealing with sparse matrices.

The presentation and notation here is somewhat similar to [Sne08]. Thus, in-
terested readers are encouraged to first read his work, especially the derivations
in the appendix. Our presentation deviates in minor ways, but should hopefully
still be fairly easy to compare. The log likelihood derivatives have been heavily
restructured though. The mathematical derivation of this restructuring would
be extremely tedious, hence only the final result is presented.

Here are a few definitions:

• diagm is the function that returns the matrix consisting of only the diag-
onal of a given matrix. diagv returns the diagonal as a vector.

• ⊗ represents element-wise multiplication of vectors. A vector raised to a
power means element-wise application of that power.

• Parts in red represent terms used for Michalis K. Titsias’ variational im-
provement to the posterior marginal likelihood (see [Tit09]).

• Parts in blue provide for an alternative, more compact, direct and hence
more efficient way of computing some result if the required terms are
already available.

1Unfortunately, inverses and symmetric rank-k operations are unavoidable in some cases
to preserve optimum big-O complexity.

15

V = KNMK
−>2
M

K̃N = V V>

Λ = diagm(KN − K̃N)

Λσ2 = Λ + σ2I

r = diagv(Λ)

s = diagv(Λσ2)

¯
KNM = Λ

− 1
2

σ2 KNM

QR =

(
¯
KNM

K
>
2
M

)
(QR-factorization of

¯
KNM stacked on K

>
2
M)

B = KM +
¯
K>NM ¯

KNM = R>Q>QR = R>R

Q̃ = bQc2N −→ ¯
KNM = Q̃R

S = Λ
− 1

2
σ2 Q̃R−>

l1 = − 1
2 (log |B| − log |KM |+ log |Λσ2 |+N log 2π)+− 1

2s
−1 · r

¯
y = s−

1
2 ⊗ y

t = R−1 Q̃
>

¯
y

u =
¯
y − Q̃Q̃

>

¯
y

l2 = − 1
2u ·

¯
y = − 1

2 (‖
¯
y‖2 − ‖Q̃

>

¯
y‖2)

l = l1 + l2

T = K−1M − B−1

µ∗ = K∗Mt

σ2
∗ = K∗ − K∗MT K∗M

> + σ2I

2Take first N rows.

16

U = V K
− 1

2
M

v1 = s−1 ⊗ (~1 +~1− s−1 ⊗ r − diagv(Q̃Q̃
>

))

U1 = diagm(v
1
2
1)U

W 1 = T − U>1 U1

X 1 = S − diagm(v1)U

l̇1 = − 1
2 (v1 · diagv(K̇N)− tr(W>

1 K̇M))− tr(X>1 K̇NM)

w = s−
1
2 ⊗ u

v2 = w ⊗w

U2 = diagm(w)U

W 2 = tt> − U>2 U2

X 2 = wt> − diagm(v2)U

l̇2 = 1
2 (v2 · diagv(K̇N)− tr(W>

2 K̇M)) + tr(X>2 K̇NM)

l̇ = l̇1 + l̇2

∂l1
∂σ2 = − 1

2 (sum(v1)− sum(s−1))
∂l2
∂σ2 = 1

2 sum(v2)
∂l
∂σ2 = ∂l1

∂σ2 + ∂l2
∂σ2

v = v1 − v2

W = W 1 −W 2 = T − tt> − U>1 U1 + U>2 U2

X = X 1 − X 2 = S −wt> − diagm(v)U

l̇ = − 1
2 (v · diagv(K̇N)− tr(W>K̇M))− tr(X>K̇NM)

∂l
∂σ2 = − 1

2 (sum(v)− sum(s−1))

17

Bibliography

[AL08] Mauricio Alvarez and Neil D. Lawrence. Sparse convolved gaussian
processes for multi-output regression. In NIPS, pages 57–64, 2008.

[Bis07] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, 1 edition, October
2007.

[FWA+09] Leslie Foster, Alex Waagen, Nabeela Aijaz, Michael Hurley, Apolo-
nio Luis, Joel Rinsky, Chandrika Satyavolu, Michael J. Way, Paul
Gazis, and Ashok Srivastava. Stable and efficient gaussian process
calculations, April 2009.

[Mey00] Carl D. Meyer, editor. Matrix analysis and applied linear algebra.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[RW06] Carl Edward Rasmussen and Christopher Williams. Gaussian Pro-
cesses for Machine Learning. MIT Press, 2006.

[SG05] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes
using pseudo-inputs. In NIPS, 2005.

[SG06] Edward Snelson and Zoubin Ghahramani. Variable noise and di-
mensionality reduction for sparse gaussian processes. In UAI. AUAI
Press, 2006.

[Sne08] Edward Lloyd Snelson. Flexible and efficient Gaussian process mod-
els for machine learning. PhD thesis, Gatsby Computational Neu-
roscience Unit, University College London, February 06 2008.

[SRG03] Edward Snelson, Carl Edward Rasmussen, and Zoubin Ghahramani.
Warped gaussian processes. In Sebastian Thrun, Lawrence K. Saul,
and Bernhard Schölkopf, editors, NIPS. MIT Press, 2003.

[Tit09] Michalis K. Titsias. Variational model selection for sparse gaussian
process regression. Technical report, School of Computer Science,
University of Manchester, UK, 2009.

18

[WKS08] Christian Walder, Kwang In Kim, and Bernhard Schölkopf. Sparse
multiscale gaussian process regression. In William W. Cohen, An-
drew McCallum, and Sam T. Roweis, editors, Machine Learning,
Proceedings of the Twenty-Fifth International Conference (ICML
2008), Helsinki, Finland, June 5-9, 2008, volume 307 of ACM In-
ternational Conference Proceeding Series, pages 1112–1119. ACM,
2008.

19

